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Nonlinear surface waves on the boundary of a cylindrical 
electronic medium in the presence of an electric field 
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Departmen1 of Plasma Physics, UmeP University, 5.90187 Um& Sweden 

Received 29 March 1993 

Abstract. It is demonstrated how nonlinear surface modes at the boundarj of a cylindrical 
electronic medium are coupled IC e x m a l  mmmt or time-varying electric fields in the bounding 
dielectric. Exact equations governing lhe interaction are obtained and investigated numerically. 
It is found that lhe external field can drive only cenain surface modes, in spite of the fan that 
all the modes are shnngiy coupled. 

1. Introduction 

Recently, there has been much interest in the behaviour of surface waves occurring on 
the boundary of low-temperature plasmas [I-121. These modes can be of importance in 
many scientific and technological applications, such as in laboratory plasma production 
and diagnostics, new sources of light, coherent radiation, and particle beams, solid-state 
and optical control devices, as well as in machines for plasma-assisted material processing 
[2,4,6,8,9]. They Serve as the coupler of energy and information between the plasma 
(active medium) and the outside (bounding medium) environment. It is thus of relevance 
to investigate in detail the surface modes and their interaction with the volume modes in 
the plasma. 

The possible existence of exact solutions for finite amplitude surface waves propagating 
on the boundary between a cold plasma and its dielectric container has been pointed out 
recently 110.1 I]. These solutions are exact in the sense that, starting from the conservation 
equations for the electrons and Maxwell’s equations, no approximations of any kind, such as 
perturbations and ad hoc truncations, need to be made in obtaining the exact eigenfunctions 
describing the spacetime behaviour of the wave motion. Such solutions are of special 
interest because, besides characterizing accurately the nonlinear surface wave physics, they 
are also useful in verifying various approximation or numerical schemes in the study of 
wave interactions and instabilities. 

In this paper, we consider the effect of an external electric field on nonlinear surface 
waves [10,11]. It is shown that steady and non-steady external fields in the bounding 
dielectric can selectively couple to, modulate, and resonantly amplify certain surface modes, 
while leaving the other modes unaffected. The coupling has the propetty that the unaffected 
modes do not grow, although they an nonlinearly coupled to the amplified modes. The 
reason is that the equations for the unaffected modes do not contain (the growing) terms 
associated with the external field or the affected mode. These results can be of relevance to 
research on novel plasma-driven diodes and transistors as well as the production and control 
of surfaFe-wave generated low-temperature plasmas. 

t Permanent address: Theoretische Physik I, Ruhr-UniversiUt Bochum, D-44780 Bochwn, Federal Republic of 
Germany. 
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2. Electron dynamics 

Following [ 10.1 I], let us consider a cylindrical electronic plasma medium in the region 
0 c r < R with a positively charged immobile background of lattice or heavy ions. The 
plasma is bounded at r = R by a rigid dielectric of constant permittivity e.+ A spatially 
constant external electric field E&)i  is applied to the dielectric. Here, 2 is a unit vector 
perpendicular to the cylinder axis 2, that is, x = rcos0. The evolution of the electron 
density n is governed by the equation of number density conservation 

L Stenflo and M Y Yu 

a,n + V .(nu) = 0. (1) 

Here, the electron bulk velocity U satisfies the cold-fluid momentum conservation equation 

(2) 9 
m 

a,u+ (U. v ) ~  = --E 

where 9 = -e, and m are the electron charge and mass, and E is the wave electric field. 
Our formulation is in the same spirit as that of Lorenz [I21 who investigated nonlinear 

waves and found deterministic chaos in atmospheric physics by first separating the spatial 
variations from the temporal one. However, in,contrast to the approach of Lorenz, here no 
ad hoc trimcation of any kind needs to be made. Accordingly, for the spatial wave structure 
inside the nonlinear medium, we make the ans;itze. 

n = n(t)  ( 3 ~ )  

Vr = (V2 -+ V I  CoS28)~  4- VcCOSO (3b) 

(3c) 

(34 

where V I ,  vz. q. v,, e. pc, p,,, and (p. are functions of time only. The above ansatze 
have been chosen such that they lead to exact equations goveming the time evolution of the 
latter quantities. Thus, one may consider the present approach as a generalized separation 
of variables method. 

For the external and self-consistent fields in the linear bounding dielectric, we have 

r 

r r .  
I -  sin28 - v, sin0 + v3- R R 

V@ = -U 

rz r r .  
R2 R R P ) ~ < R  = (qC + qmCOS20)- - pc -k ( O ~ - C O S ~  + e- 51110 

(4) p,,~ = -E&)r cos0 + (pn + R E O ) -  cos0 + pm- cos20 - (03- sin8 

which satisfies the Laplace equation as required. The external electric field E&) may be 
constant or any function of time. Thus, the far-field electric field in the bounding dielectric 
has the structure 

R R2 R .  
r i-2 r 

E,>R = -Vp,>,q = E ~ ( t ) ~ + O ( l / r ) B ^ + O ( I / r 2 ) i  (5 )  

where we emphasize that .? is a unit vector perpendicular to the axis of the cylinder. 
The equations are completed by Poisson’s equation 

(6) 
4 
€0 

0’9 = --(n -no) 
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where no is the constant background ion density. 

across the interface between the plasma and the rigid dielectric, namely 
We shall also need the boundary condition that the total current density is continuous 

Consistent with the cold-plasma approximation, the thickness of the surface layer at the 
interface is taken to be smaller than any other characteristic dimension. We note that for a 
warm or hot plasma, a surface layer with a thickness of the order of the Debye length can 
appear near r = R - 0. In such a layer highly localized surface charges and currents can 
occur. 

3. Evolution equation 

The ansatze (3) have been chosen such that the spatial and time dependences of the original 
field variables can be separated. In fact substituting (3) into (1). (2) and (6). using the 
boundary condition and equating the coeflicients of the various spatial variables, one obtains 

d r N  + 2NV2 = 0 (7) 

d t V i + Z V ~ V z = - 2 b m  ( 8 )  

(9) 

(10) 

(11) 

(12) 

dtV2 + Vf + V; - V: = f ( N  - 1) 

drV3 + 2VzV3 = 0 

dtVc + (VI  + VdVc = -A 

4& = I - N 

2(1 + Eddtbm = N V I  (13) 

(1  +Ed)dfbn=Nv~c+2€, jdt l?o (14) 

where we havedefined N = n / n o 9  C;. = w j / R o ,  ( j  = 1,2,3,c,rn.n),@j =q, 'p j /noqR2.  
& = EoEo/noRq, and the time t has been normalized by the inverse plasma frequency 

Since & is given directly by (12) in terms of N ,  and from (7) and (10) V3 = C N ,  where 
C is a constant, we have effectively six unknowns, N ,  V I ,  V,, V,. &, and #" govemed by 
six nonlinear ordinary differential equations. We stress that no approximations of any 
kind have been made in obtaining this set of nonlinear evolution equations from the basic 
equations (I) ,  (2) and (6). which are fairly general, together with the boundary conditions. 
The solutions, on the other hand, are particular because of the ans%tze (3) used in order to 
achieve the separation of the space and time variables. 

m i l .  
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4. Nonlinear waves 

Before proceeding with the numerical solutions, it is instructive to briefly discuss the linear 
limit first Here, one finds that the variable pairs N and V2, V I  and q5m, and V, and are 
the eigenfunctions of three independent linear modes of the simple harmonic type. The first 
(N, V,) is a volume mode with the (normalized) frequency unity, representing the ordinary 
plasmons. The others, ( V I ,  &) and (Vc, 4"). are surface plasmon modes with the frequency 
(1  + Ed)-' / ' .  we note that the external field Eo is coupled directly only to the (Vc, @n) 
surface mode. 

For an insight into the mode structures under discussion, let us look at the special case 
cd = 3. Here, the (normalized) frequencies of the three natural modes involved are 1, 1/7. 
and In, so that a three-wave resonance would seem to be possible. This actually does not 
occur. It is easily seen from the equations that the nonlinear terms in (7x14)  do not satisfy 
the three-wave coupling conditions, so that they do not couple the appropriate modes for 
resonant interaction to occur despite the matching of the frequencies of the three modes. 

Using the Runge-Kum method for numerical integration, we have solved the evolution 
equations for several representative cases. In the integration, we start with small initial 
values for all the variables. These initial conditions determine the final states of the 
waves. Since we have not been able to derive any useful conservation laws or analytical 
existence conditions for the solutions, we proceed to solve the equations using various sets 
of initial conditions. Solutions which become numerically unstable andor are unphysical 
are discarded. Figure l(a) shows the well behaved volume and surface waves for the case 
Eo = 0. Figure l(b) shows the corresponding phase diagrams. For this case as well as 
those following, we have used Ed = 1 and C = 0.02. It is worth noting that, although 
the amplitudes of the waves are small, frequency shift and broadening due to the nonlinear 
wave-wave interaction are evident from the band-lie structures of the phase diagrams 
of the three waves, indicating strong nonlinear coupling. In figure 2. Eo is taken to be 
sinusoidal in time, namely = A sin(wt), where A = 0.05. Note that both the amplitude 
and the frequency of the surface mode (Vc, 4") are modulated in a stable (non-growing) 
manner. That is, the waves are slightly frequency and amplitude modulated without the 
occurrence of an instability. Figure 3 shows the case in which the external field is of small 
amplitude, namely A = 0.01, but oscillates at the resonant frequency (1 + % 0.71 
of the linear surface waves. One sees that here resonance growth of the affected surface 
mode occurs, but the other two modes are left unchanged. We have also evaluated the case 
(not shown) in which the external field is a constant, representing a constant energy input, 
and obtained the expected result that the affected mode grows liearly without additional 
frequency modulation. Furthermore, larger amplitude waves with broad frequency bands 
can also be shown to exist. 

We emphasize that in the present formulation the shucture of the evolution equations 
is such that only one mode, namely that corresponding to the surface fluctuations (Vc, &), 
is coupled directly to the external electric field and can become resonant with it. The other 
modes, which are nonlinearly coupled to this surface mode, can affect it although not vice 
versa. 

5. Discussion 

We have demonstrated that exact nonlinear wave solutions can be constructed for 
a cylindrical electronic medium bounded by a dielectric in an external electric field 
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Figure 1. (a) Small amplitude waves in the abrence of &, amplitude against time. Full curve, 
N - I :  broken curve. &: and chain curve. & (b)  Phase space of the duet modes. Full curve. 
(N - 1. V2): bmken curve, (VI, &): and chain curve, (Vc. 6"). Note the nonlinear frequency 
broadening despite the small amplitudes. Here and below, ~d = 1 and C = 0.02. 

perpendicular to the axis of the cylindrical plasma. Linearly, three distinct modes, one 
volume and two surface, exist near the plasma boundary. Nonlinearly, these modes are 
strongly coupled, although not resonantly. Furthermore, only one of the modes, a surface 
plasmon mode, can be driven by the external field. This mode, which is directly coupled 
to the external field, can become unstable if the latter oscillates at a frequency near the 
resonance frequency f 1 + e & ' / % ~ ~  of the surface plasmon. The other modes can in principle 
feed energy into the mode which is affected. Nevertheless, they cannot be driven by the 
external field or the growing mode. 

We have assumed that the applied field is maintained by some external sources. If it is 
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Figure 2. (a)  Waves in lhe presence of Eo = Asin(wl). with A = 0.05 and wg = 0.3. The 
laner is much lower ulan the normalized resonance frequency. which is approximately 0.71 for 
~d = 1. ( b )  P& space. Note the stable frequency and amplitude.mcduIatian of the third made 
(Chain CUNeS). 

allowed to evolve selfconsistently according to the properties of the dielectric, we expect 
its amplitude to decrease. as it feeds energy to the growing surface waves, leading eventually 
to a steady state. 

Our results may be of interest to the study of plasma diodes and transistors, surface-wave 
generated plasmas, plasma-wall interaction, control of plasmas for material processing, 
modulation of pulses in fibre-optics communications, as well as for the verification of 
approximation and numerical methods in nonlinear wave problems. Since the evolution 
equations are obtained without making use of perturbations and truncations of any kind, the 
system may provide another mathematically exact model for investigating wave instabilities, 
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Figure 3. Same as figure 2. except that A = 0.01 and q = 0.71. Here, although A is smaller. 
fast growing unstable resonance of lk third mode (chain uwes) occuIs. 

saturation, and deterministic chaos [12]. On the other hand, at present we are unaware of 
any more general ansitze for the field quantities which can lead to more general nonlinear 
wave problems. 
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